Probability and Statistics

Probability, the science of chance, and statistics, the science of interpreting data, influence and govern our daily lives. They are used to predict the weather, determine the effectiveness of medicine and are an important process in making scientific breakthroughs. They can even help us play card games. 

Get started

Millions of flashcards designed to help you ace your studies

Sign up for free
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What sort of data does a pie chart represent?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are continuous variables?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are true?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A lottery machine contains balls with numbers from 1 to 10. All the numbers come out just as often as one another. What is the probability that the next ball drawn is a 1?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

I have a deck of 54 playing cards: 52 regular cards and 2 Jokers. I shuffle the cards thoroughly. What is the probability that the first card I draw is a Joker?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Scarthorpe City and Scarthorpe United are rival football teams. They have played many matches before. Sometimes City wins, sometimes United wins. The one thing the experts can agree on is that the outcome of the next match is very hard to predict.  If the experts know what they're talking about, which of these could be the probability that Scarthorpe United will win? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

An internet marketer knows from past performance that the probability of a spam email leading to a sale is 0.001%. They send out 100 million emails. If performance remains the same, how many sales will this lead to? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

I am not a good archer. I shot an arrow 2000 times, and it hit the target just 20 times. What is the experimental probability that I hit the target?  a) 20% b) 10% c) 0.1 d) 0.01

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the correct formula for calculating the probability of getting a number greater than 4 when rolling a six-sided die?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

How are the probabilities of two independent events both occurring calculated?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the range of values for basic probability, and what do the extreme values represent?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What sort of data does a pie chart represent?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are continuous variables?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Which of the following are true?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

A lottery machine contains balls with numbers from 1 to 10. All the numbers come out just as often as one another. What is the probability that the next ball drawn is a 1?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

I have a deck of 54 playing cards: 52 regular cards and 2 Jokers. I shuffle the cards thoroughly. What is the probability that the first card I draw is a Joker?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

Scarthorpe City and Scarthorpe United are rival football teams. They have played many matches before. Sometimes City wins, sometimes United wins. The one thing the experts can agree on is that the outcome of the next match is very hard to predict.  If the experts know what they're talking about, which of these could be the probability that Scarthorpe United will win? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

An internet marketer knows from past performance that the probability of a spam email leading to a sale is 0.001%. They send out 100 million emails. If performance remains the same, how many sales will this lead to? 

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

I am not a good archer. I shot an arrow 2000 times, and it hit the target just 20 times. What is the experimental probability that I hit the target?  a) 20% b) 10% c) 0.1 d) 0.01

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the correct formula for calculating the probability of getting a number greater than 4 when rolling a six-sided die?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

How are the probabilities of two independent events both occurring calculated?

Show Answer
  • + Add tag
  • Immunology
  • Cell Biology
  • Mo

What is the range of values for basic probability, and what do the extreme values represent?

Show Answer

Review generated flashcards

Sign up for free
You have reached the daily AI limit

Start learning or create your own AI flashcards

Contents
Contents
Table of contents

    Jump to a key chapter

      More generally, probability and statistics help individuals and institutions make better decisions by learning from events in the past and applying this knowledge to the present to affect the future.

      The relationship between probability and statistics

      It is important to understand the differences and similarities between probability and statistics. They are different but related subjects.

      Probability is a theoretical subject used to analyse the likelihood of events happening in the future. On the other hand, statistics is an applied subject which uses probability theory to analyse data which has been collected.

      Probability and statistics are related in that the theories we develop in probability mathematics are compared with statistical findings which can tell us more information about the data. We can also use statistics to estimate the probability of something happening in the future.

      Probability

      Probability is the likelihood of some event occurring. The probability of an event happening is always a fraction, decimal or percentage between 0 and 1.

      Probability is the branch of mathematics that studies the likelihood of events occurring.

      The basic formula for probability is the following:

      Some terminology for probability

      There is a lot of terminology in probability which you need to be familiar with. The better you understand the basic concepts detailed below, the easier it will be when you tackle trickier probability questions!

      TerminologyDefinition
      Experiment or trialA repeatable action which has a defined set of outcomes.
      Sample spaceThe set of all possible outcomes of an experiment, usually denoted by or S.
      EventAn event is one particular outcome, usually denoted by a capital letter. The probability of event A occurring is commonly notated as P(A).

      An example of probability

      You are on a game show and you have to choose between 2 boxes. One contains a sports car and the other is empty. You are given no clues as to which box contains the prize and must therefore choose a box at random. What is the probability you win the sports car?

      Solution

      Here, the sample space is S = {W, L} where W stands for 'win' and L stands for 'lose'. This is the sample space since these are the only possible outcomes.

      Intuitively, since you are choosing at random, there is an equal probability of choosing the prize and choosing the empty box. Since probabilities are always between 0 and 1, the probability of choosing the sports car is 0.5 (= 50%).

      We can also arrive at this answer by using the basic formula for probability. The number of ways to choose the box with the sports car is 1, and the total number of outcomes (either choosing the sports car or choosing the empty box) is 2. Using mathematical notation, the probability of winning is as follows:

      .

      Therefore, the probability of choosing the sports car and therefore winning is which is equivalent to 50% or 0.5.

      Statistics

      Data usually contains far too many individual numbers for the human brain to even comprehend, let alone understand. This is why we need statistics: to help us to better understand the underlying complexities in the data we have collected.

      Statistics concerns the analysis and interpretation of data which has been collected.

      The sorts of tasks you will have in statistics questions will fall into one of three categories: data collection, analysis, and visualisation and interpretation.

      Data collection

      The type of data collected will depend on the statistical question you want answered, i.e. the characteristic you want to study. You might be interested in collecting data through holding a scientific experiment (e.g. measuring the effect of location on the growth of plants) or perhaps by collecting data through observation (e.g. recording the number of students that are late for class).

      All data falls into two categories: qualitative and quantitative.

      Qualitative data refers to descriptive data, such as words. It might be collected through interviews or surveys.

      Quantitative data refers to things which can be represented using numbers, like measurements such as height and weight, or quantities of something that we are interested in knowing more about. Important methods include:

      • conducting a census

        • data is collected from every single member of a population

      • sampling

        • data is collected from a subset of a population called a sample

        • this subset is either randomly chosen or is chosen to be representative of the wider population

      • controlled experiments

        • a scientific procedure is planned such that accurate data can be collected and analysed

      Quantitative data also falls into two categories: continuous and discrete.

      Continuous variables can take on any value within a range, which can make it more difficult for us to count them. For example, length can be measured to as many decimal places as is possible. It's up to you, the data collector, to decide how many decimal places are necessary.

      Discrete variables must take on particular values within a range, which makes it easier to count them. For example, shoe size can be 4 or 4.5, but not 4.26735!

      Analysis

      Once you have collected your data, it is now time to start analysing it. Since it is very difficult (and often impossible!) to understand data in its raw form, we need to condense it into manageable descriptions that retain as much information about the data as possible whilst being understandable. This is the ultimate goal of statistics: to understand, describe and find meaningful information from datasets.

      Descriptive statistics are particularly useful. These are numbers that tell us something about the data. There are two kinds: measures of location and measures of spread.

      Measures of location use one statistic to summarise a dataset. They include:

      • mean

        • a particularly common and useful statistic that requires summing values and dividing by the number of values, often denoted by (pronounced 'x bar'):

      ;

      • median

        • the middle value in an ordered list of values;

      • mode

        • the most common value.

      Measures of spread describe the variability of the data. They include:

      • range

        • this is the largest value minus the smallest value in the data;

      • interquartile range

        • this describes the range of the central 'quartiles' of the data, between 25% and 75% which surround the median at 50%.

      Data is often be represented in frequency tables. Frequency refers to the number of times something occurs, which in the case of statistics will be the number of times a particular data value occurs. From a frequency table, you will be able to extract descriptive statistics such as the ones listed above. You will also be able to use these to visualise data.

      Visualisation and interpretation

      Descriptive statistics are useful in condensing data into a small amount of information, and can tell us about the location and spread of the data. Data visualisations, on the other hand, are able to graphically represent the data. For a thorough analysis, you would ideally use both methods to be able to fully understand the behaviour of the data.

      We will now go through some examples of different data visualisations. Don't worry if you can't yet fully understand the examples below – there are in-depth explanations in other articles!

      Line graphs

      These are useful in representing continuous data and trends.

      The following is an example of a line graph:

      StudySmarter originals, Rebecca Farthing

      Bar charts

      These are useful in representing data which is grouped.

      The following is an example of a bar chart:

      StudySmarter originals, Rebecca Farthing

      Histograms

      These are useful in representing the frequency of something happening.

      The following is an example of a histogram:

      StudySmarter originals, Rebecca Farthing

      Pie charts

      These are useful in representing proportional data.

      The following is an example of a pie chart:

      StudySmarter originals, Rebecca Farthing

      Box-and-whisker plots

      These visualise the range, interquartile range and median.

      The following is an example of a box-and-whisker plot:

      StudySmarter originals, Rebecca Farthing

      Scatter graphs

      Shows the relationship between two variables.

      The following is an example of a scatter plot:

      StudySmarter originals, Rebecca Farthing

      Finally, once the data has been analysed and represented graphically, we can draw conclusions from the data. Have a look at the example below.

      An example of statistics

      The following is data collected from a team's football matches. The frequency of the number of goals scored by each player per match is recorded from a total of 20 matches.


      Team memberScored 0 goalsScored 1 goalScored 2 goalsScored 3 goalsScored 4 goals
      Zack56441
      Josh95700
      Amy013340
      Ahmed211412
      Emily712001

      a) What type of data is presented here?

      b) Which team member scores the largest number of goals over the course of the season?

      c) Which player scored the highest average number of goals per game?

      d) Represent this data using a pie chart.

      e) What does this data tell us about the performance of the players?

      Solution

      a) Frequency and goals scored per match are both quantitative, discrete data. It is impossible to score 0.5 goals!

      b) By multiplying the number of goals by the frequency, f, we can find the total goals scored by each player:

      Team memberf x 0f x 1f x 2f x 3f x 4Total goals
      Zack054 × 2 = 84 × 3 = 122 × 4 = 833
      Josh057 × 2 = 140 × 3 = 00 × 4 = 019
      Amy0133 × 2 = 64 × 3 = 120 × 4 = 032
      Ahmed0114 × 2 = 81 × 3 = 32 × 4 = 830
      Emily0120 × 2 = 00 × 3 = 01 × 4 = 416
      We can see that the most goals scored by one player was by Zack, who scored 33 during the season.c) To find the average number of goals per match, we need to divide the total number of goals by the number of matches:Zack: goals per match

      Josh: goals per match

      Amy: to 2 d.p. goals per match

      Ahmed: goals per match

      Emily: goals per match

      d) A pie chart shows proportional data. This means we need to work out what proportion of the total goals in the season are scored by each player. To do this, we should divide each player's total goals by the total number of goals scored during the season.Total number of goals scored by all players = 33 + 19 + 32 + 30 + 16 = 130Zack: Josh: Amy: Ahmed: Emily:
      StudySmarter originals, Rebecca Farthing
      e) There isn't just one right answer here! This is about interpretation, so what is important is to have your answer backed up by statistics that you have found from the data.A possible conclusion we might take from the data is that the three highest-scoring players, Zack, Amy and Ahmed, all contributed a similar number of goals, making up 73% of the goals scored. On the other hand, Ahmed and Emily together contributed 27% of the goals, which is considerably less.

      Probability and Statistics - Key takeaways

      • Probability is the branch of mathematics that studies the likelihood of events occurring
      • An experiment or trial is a repeatable action which has a defined set of outcomes
      • A sample space is the set of all possible outcomes of an experiment
      • An event is one particular outcome. The probability of event A occurring is P(A)
      • Statistics concerns the analysis and interpretation of data which has been collected
      • Data can be qualitative or quantitative
      • Quantitative data can be discrete or continuous
      • Measures of location use one statistic to summarise a dataset
        • e.g. mean, median and mode
      • Measures of spread describe the variability of the data
        • e.g. range and interquartile range
      • Some examples of data visualisations are line graphs, bar charts, histograms, pie charts, box-and-whisker plots and scatter plots
      Frequently Asked Questions about Probability and Statistics

      What is Probability? 

      Probability is the science of chance.

      What is statistics?

      Statistics concerns the analysis and interpretation of data which has been collected.

      What is an example of statistics and probabilities? 

      An example of statistics and probabilities is a coin toss: we know that if the coin is unbiased, the probability of 'heads' is 0.5.

      How to solve probabilities and statistics? 

      Solving probabilities requires applying probability theory and logic. Using statistics requires analysing data.

      What are the rules in probabilities and statistics? 

      One of the main rules of probability theory is that a probability can never be greater than 1 or less than 0.

      Save Article

      Test your knowledge with multiple choice flashcards

      What sort of data does a pie chart represent?

      Which of the following are continuous variables?

      Which of the following are true?

      Next

      Discover learning materials with the free StudySmarter app

      Sign up for free
      1
      About StudySmarter

      StudySmarter is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

      Learn more
      StudySmarter Editorial Team

      Team Math Teachers

      • 10 minutes reading time
      • Checked by StudySmarter Editorial Team
      Save Explanation Save Explanation

      Study anywhere. Anytime.Across all devices.

      Sign-up for free

      Sign up to highlight and take notes. It’s 100% free.

      Join over 22 million students in learning with our StudySmarter App

      The first learning app that truly has everything you need to ace your exams in one place

      • Flashcards & Quizzes
      • AI Study Assistant
      • Study Planner
      • Mock-Exams
      • Smart Note-Taking
      Join over 22 million students in learning with our StudySmarter App
      Sign up with Email